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The Computation of Electron Transfer Rates: The Nonadiabatic 

Instanton Solution 

Jianshu Cao, Camilla Minichino,* and Gregory A. Voth 

Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 

Abstract 

A computational theory for determining electron transfer rate constants 

is formulated based on an instanton expression for the quantum rate and the 

self-consistent solution of the imaginary time nonadiabatic steepest descent 

approximation. The theory obtains the correct asymptotic behavior for the 

electron transfer rate constant in the nonadiabatic and adiabatic cases, and 

it smoothly bridges between those two limits for intermediate couplings. Fur- 

thermore, no assumptions regarding the form of the diabatic potentials are 

invoked (e.g., harmonic) and more than two diabatic states can be included 

in the calculations. The method thereby holds considerable promise for com- 

puting electron transfer rate constants in realistic condensed phase systems. 

DT1C QUALD7Y INSPECTED 3 

»Permanent Address:  Dipartimento di Chimica, Universita della Basilicata, Via Nazario Sauro 

85, 1-85100, Potenza, ITALY 
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I. INTRODUCTION 

Electron transfer (ET) processes in chemistry, physics, and biology have been the subject 

of a considerable number of experimental and theoretical studies. [1,2] Recent computational 

approaches for computing ET rate constants range from those based on Fermi's golden 

rule [3] to explicit quantum dynamical calculations on simplified models of ET processes. 

[4-9] In addition, approaches derived from path integral quantum transition state theory 

[10-13] have been developed to calculate the ET rate based on the centroid density of the 

electronic state variable. [14-16] Despite the many theoretical and computational studies of 

ET reactions, a unified computational approach has not yet been developed which is capable 

of determining ET rate constants for arbitrary values of the electronic coupling in systems 

characterized by general nonlinear potentials and/or a significant degree of nuclear mode 

tunneling. Significant progress towards this goal will be described in the present paper. 

The underlying basis of the theory described herein is the semiclassical approximation to 

the quantum partition function, [17] which can be shown to be closely related to the ther- 

mally averaged quantum tunneling rate in metastable systems. [18-21] Along these lines, 

Miller has suggested that the quantum reactive flux at low temperature can be determined 

by the so-called bounce trajectory on the inverted potential energy surface, i.e., the instan- 

ton. [19] In terms of the steepest descent approximation, the instanton trajectory along the 

periodic imaginary time axis satisfies the Euler-Lagrange equation, and the quantum fluctu- 

ations along the trajectory take the form of a Gaussian functional which can be calculated 

by evaluating the Van Vleck determinant. [22] The extension of these ideas to the dissipative 

quantum tunneling regime has been discussed by Caldeira and Leggett at some length. [23] 

However, while the original instanton analysis is suitable when a unique potential energy 

surface can be assumed, an effort to include the possibility of nonadiabatic transitions to 

other potential surfaces is necessary in order to correctly describe electron transfer processes 

in a general way. This is the focus of the present analysis. 

Many advances have taken place in the field of nonadiabatic dynamics simulation for 



real time quantum dynamics (see, e.g., Refs. [24-27]). The theoretical basis for several 

algorithms [24,27] is the Pechukas theory of nonadiabatic collisions. [28,29] Although it 

was originally formulated for real time quantum dynamics, the self-consistent nonadiabatic 

theory of Pechukas bears a similarity to the instanton theory, both being based on the 

stationary phase (or steepest descent) approximation to a Feynman path integral. [30,31] 

The former theory is a real time formulation, while the latter is in imaginary time. In 

the present paper, the nonadiabatic theory of Pechukas will be combined with the instanton 

theory to yield a novel and computationally powerful approach for the calculation of electron 

transfer rate constants under rather general conditions. 

The present paper is organized as follows: In Sec. II, the basic "nonadiabatic instanton" 

approach is formulated. A numerical algorithm for solving the equations is then detailed in 

Sec. Ill, and results are presented for some representative examples. Concluding remarks 

are given in Sec. IV. 

II. GENERAL FORMALISM 

To put the formalism in the most general context, we consider the Hamiltonian for a 

many-body, multi-level system, given by 

H = Hd(q) + Hb(r) + Vint(q,v)    , (2.1) 

where q is the collection of N nuclear degrees of freedom of an electron transfer system 

of interest, r is the collection of the "bath" nuclear degrees of freedom, Hd is the part of 

Hamiltonian defined on an electronically diabatic basis, Hb is the bath Hamiltonian, and 

Vint is the interaction potential between the system and the bath. The Hamiltonian Hd can 

be explicitly expressed in terms of the elements hü (for the ith diabatic surface) and h^ (for 

the coupling between the ith and jth diabatic surfaces), i.e., 

ffd(q) = E^+EE^ • (2-2) 
i i    j>i 

Here, the elements are defined as 



ha  =   \i)[K(q) + Vü(q)](i\    , (2.3) 

where K is the kinetic energy term for the nuclear coordinates q, and 

ha   =  Vy(q)(l001 + IJ'M)     • ^ 

where the off-diagonal coupling elements satisfy the Hermitian relation V{j = V£. Unlike 

the usual adiabatic barrier crossing problem, the potential energy terms Vi{ in the elements 

ha describe "simple" diabatic surfaces having, or not having, potential wells. Therefore, in 

the most general sense the quantum reactive dynamics is induced by a transition between 

different diabatic surfaces instead of taking place on a single adiabatic surface (e.g., a double 

well formed on the lowest adiabatic potential surface). This formulation of the problem is 

completely general. 

Following a prescription originally proposed by Langer at zero temperature [18] and later 

employed in various adiabatic quantum rate calculations, [20,21] the desired electron transfer 

rate constant kET can be approximated in terms of equilibrium quantities by 

1      \RZ        1  zb (2 - 

with Z0 being the partition function of the reactant state, Z is the overall system partition 

function, and Zb is loosely defined here as the "barrier" contribution to the partition function. 

The final states are assumed to have sufficient density that kET can be interpreted as the 

rate of exponential tunneling decay. 

Provided the effective barrier height is significantly larger than the thermal energy in the 

diabatic wells, the steepest descent method can be applied to evaluate the imaginary part 

of the partition function Z which leads to the instanton solution in Eq. (2.5). A number of 

aspects of the instanton solution in various limits have been elaborated by others (see, e.g., 

Refs. [32-37]). The focus of the present work, however, is on a computational methodology 

to evaluate the instanton rate constant in the most general case which bridges the adiabatic 

and nonadiabatic (golden rule) limits of ET. An assumption has been made in formulating 

this approach that Eq. (2.5) is a valid approximation in all limits of the ET problem. While 



numerical and analytical results presented below will support this assumption, it has not 

been derived from first-principles. 

The stationary path of the Hamiltonian in Eq. (2.1) consists of the nuclear instanton 

trajectory and the self-consistent electronic wavefunction propagation in imaginary time 

arising from the coupling of the two subsystems. This self-consistency arises from the fact 

that the equation of motion for the nuclear coordinates depends on the imaginary time 

evolution of the multi-level wavefunction which, in turn, depends on the instanton trajectory. 

A similar challenge, albeit for real time dynamics, has been encountered previously in the 

study of the dynamics of coupled classical-quantum systems. [24,26,27] Pechukas was the 

first to provide a rigorous prescription for the self-consistent stationary phase classical-like 

trajectory and time-dependent wavefunction based on Feynman's path integral formulation 

of quantum dynamics. [28,29] This elegant theory has since been developed into various 

approximation algorithms for nonadiabatic dynamics. [24-27] A Pechukas-like theory will 

now be developed for the nonadiabatic quantum instanton solution [cf. Eqs. (2.1) and (2.5)] 

so as to provide a means for calculating the electron transfer rate constant under general 

conditions. 

The trace operation of the quantum Boltzmann operator for the Hamiltonian in Eq. (2.1) 

involves a summation over all the electronic diabatic surfaces and an integration over all 

nuclear coordinates. Importantly, however, this operation must be rewritten to expose the 

terms involving diabatic state transitions which contribute to the imaginary part of the 

partition function. By inserting complete sets of diabatic and coordinate basis states, the 

tunneling rate from one diabatic surface, denoted by \ß), to another diabatic surface, denoted 

by \u), is related to the following quantity 

ZßtV  =       I dv I dr' fdq I dq' 

x   {fx,q,v\exp(-ßH/2)\u,q',r')(u,q',r'\eM-ßH/2)\^q,v)    , (2.6) 

where q and q' are located near the wells of diabatic surfaces |/x) and \v), respectively. It 

should be noted that the two imaginary time propagators in Eq. (2.6) are the same.  (See 



alsoEq. (C2) of Ref [37], p. 145.) 

Next, the propagator is separated into the wavefunction propagation of the diabatic 

levels and the propagation arising from H0, which is the Hamiltonian excluding Hd, giving 

Z^ =  /Pr(r)|Dq(r)exp{-5o[q(r),r(r)]/?i} 

x T/u/[^>Rj9/2,q(T)]T^[nJ0/2>O,q(T)]    . (2.7) 

Here, SofaO").1^1")] is tne action functional excluding the contribution from Hd, i.e., 

So  =  jT dr {±q(r) • m • q(r) + V^r), r(r)]}  + 56[r(r)] (2.8) 

where m is the mass matrix and Sb is the action functional of the bath. 

The quantity T„M is the overlap between the initial diabatic state |/z) and the final diabatic 

state 11/). In an explicit form, the Bloch equation can be introduced to describe the evolution 

of diabatic wavefunction, i.e., 

_dui^n   = HdHr)]u{Ty) (2.9) 
or 

so that 

T^[T,T',q(T)]  =  (I/KT.T», (2-10) 

which is a functional of the system nuclear path q(r) and the imaginary time interval satisfies 

0 < r < hß. 

To facilitate further analysis, the bath average of a functional /[q(r), T(T)} is introduced 

here as 

_   / Pr(r')/[q(T), r(r)] exp {-Sb[r(r')}/h - ff drVini[q(r'), r(r')]/ft} 
{f{T))b  ~ / VT(T>) exp {Sb[v(r')]/h - J0

hß dr'Vint[q(r'), r(r')]/h} 

and the quantum average over the diabatic basis for r < %ß/2 is denoted by 

,f( u    -   H^/2,T)/(T>(T,0)1M) (212) 
{I[T))d -      {u\u(hß/2,T)u(T,0)\ri        ' 

or, if r > hß/2, then 



_   (u\u(hß,r)f(r)u(r,hß/2)\ß) (2 13) 
{nT))d -      (u\u(hß,r)u(r,hß/2)\fx) 

In Eqs. (2.12) and (2.13), the denominators are independent of the variable r and /(r) is 

in general a matrix. Both the quantum average and the solvent average are carried out by 

assuming a particular nuclear path q(r) and are thus functional of the nuclear paths. 

With the definition of Eq. (2.11) in hand, one can rewrite the path integral in Eq. (2.7) 

as 

Z^  =  /üq(r)«p{-5e//[q(r)]/n}    , (2-14) 

with the effective action functional given by 

rh? f 1. ■effHr)]  =  £ßdr     {^q(r)-m.q(r) + W6[q(r)] 

- ft (IniT^Hß, ft/3/2, q(r)]} + ln{TVß[hß/2, 0, q(r)]})     ,       (2.15) 

where 

rhß 

W6[q(r)]   =  -hin (2.16) I VT{T) exp i -S„[r(r)]/ft - JQ    drVint[q(r), r(r)]/ft 

Application of the steepest descent approximation to Eq. (2.14) leads to the equation of 

motion for the nuclear coordinates 

d2d(r) _/dHd[q(r)}\    ,  /dVint[ci(r)}\ .       . 
m'^^"-\    9q(r)    //\     Öq(r)     jb 

which is to be solved together with Eqs. (2.9) and (2.11) —(2.13) to obtain the nonadiabatic 

instanton solution.   Because of the time reversal property of the amplitudes TVß and Tß„, 

the instanton trajectory is symmetric with respect to the imaginary time ft/3/2, and so is 

the wavefunction. The self-consistent condition for the many-body nonadiabatic instanton 

solution is two-fold: the coupling between the diabatic states propagation and the instanton 

trajectory, and the coupling between the bath distribution and the instanton trajectory. 

In order to complete the instanton analysis, the second order functional derivative must 

be evaluated along the instanton trajectory. This procedure is numerically best implemented 

for a discretized path, i.e., 



M^M^h^   (2'18) 

where the indices i and j denote two different discretized imaginary time slices, q* and q,- 

are the corresponding nuclear coordinates along the instanton path, and e = hß/P, with P 

being the number of discretizations. Here, C6,y, the bath fluctuation correlation matrix, is 

given by 

/dV^Ao^dVMr^X   _ /gVjn«[q(r)]\   / dVinth(r)}\ (2 1Q) 
Cb<ij  =   \       0* öq,       )b      \       öq,       /6 \       öq,       /6' 

and, Cd,ij, the quantum fluctuation correlation matrix, is given by 

/dHMr)],    T)dHd[q(r)]\   _ /dHd[q(r)]\   (MfoM\ (2 2Q) 
C^   =   \      d*       U[Th j)       dqj      )d      \      9qt      /d\      a*      jd 

The dimensionality implicit in the above equations is such that 62S/5qi6qj is a matrix of 

dimension NxP. When diagonalizing this matrix, there will be a negative eigenvalue giving 

arise to the imaginary part of the partition function, and a zero eigenvalue corresponding 

to the translationally invariant mode. [20] The existence of a zero eigenvalue is an indica- 

tion of a true instanton solution. The removal of the zero eigenvalue requires the proper 

normalization, which is explained in Appendix A. 

After the preceding analysis is carried out, one arrives at the nonadiabatic instanton 

approximation for the electron transfer rate constant, i.e., 

kET ~   (^/^(-W^) (2-21) 

where W and Sinst are the work and the action, respectively, along the instanton trajectory, 

and D is a properly normalized determinant of the matrix in Eq. (2.18), excluding the zero 

eigenvalue (cf. Appendix A). 

In light of the preceding discussion, there are several observations which can made: 

(a) Assuming a single diabatic surface in the Hamiltonian [Eq. (2.1)] which contains a single 

barrier, one recovers the well-known single surface instanton solution.   In the case of a 



multilevel system, if the coupling is strong enough so that the nuclear system always moves 

on the lowest-lying adiabatic potential energy surface, the present nonadiabatic instanton 

solution can be shown to reduce to the single surface, adiabatic limit. 

(b) In the limit of two weakly coupled diabatic surfaces, the Bloch equation in Eq. (2.9) can 

be linearized, resulting in a transition amplitude TUß[r, r', q(r)] which is proportional to the 

off-diagonal coupling element of the Hd matrix. This limit of the theory thus recovers the 

golden rule ET rate constant. [3,38] 

(c) If the solvent is treated as being classical, the bath paths r(r) shrink to a point and 

Eq. (2.11) can be rewritten as the configurational integral 

_   / dr/[q(T), r] exp {-ßVb(v) - tfß dr'Vint[q(r'), *}ß} 
{f{T))b  " / dv exp {-ßVb(r) - jf dr'VWq(r'), r]/ft} ' 

where Vb(r) is the potential function for the bath variables. 

(d) The Gaussian bath has a wide appeal in studying solvent effects in condensed media. 

[23,39] Given a harmonic bath and a bilinear coupling between system and bath, one can 

explicitly integrate out the bath modes in Eqs. (2.11) and (2.16), giving the equation of 

motion for the instanton trajectory in Eq. (2.17) as 

m   W   _  (f^>\   - I /"Vcdr - A) • qM    , (2.23) 
dr2 \ aq(r) fd      n Jo 

where c(|r - r'|) is the imaginary time correlation function matrix 

Vl w       IT Jo smh{nßu/2) 

and J(w) is the bath spectral density matrix, related to the elements of the classical friction 

tensor 77^ (t) by 

Vij(t)  =  l^du^-cosut    . (2-25) 

(e) In the case of a two-state system with a constant coupling between the states, quadratic 

diabatic surfaces, and a Gaussian bath, the Hamiltonian becomes the spin-boson model 

which has been often implemented in the study of electron transfer (see, e.g., Ref. [39]). 

9 



III. RESULTS 

In this section, practical algorithms are described to solve the equations in the nonadia- 

batic instanton theory, and numerical calculations are carried out for the spin-boson model 

in order to apply the theory to a well-known example. In spite of its apparent simplic- 

ity, the spin-boson Hamiltonian serves as the primary model for investigating nonadiabatic 

transitions because of its physical richness. Moreover, the assumption of a Gaussian bath 

in the spin-boson model removes the self-consistent requirement of the instanton path and 

the solvent distribution, thus greatly simplifying the numerical calculations. (It should be 

noted, however, that there is still the self-consistent requirement of the instanton path with 

the nonadiabatic state propagation.) There is no fundamental problem associated with the 

former self-consistency issue and a subsequent publication will deal with it explicitly for 

multidimensional, nonlinear potentials. 

The major numerical effort in the present theory is to find the instanton trajectory, that 

is, to solve Eq. (2.17) simultaneously along with the Bloch equation in Eq. (2.9). Given the 

force, the equation of motion in Eq. (2.17) is solved iteratively for a discretized instanton 

path. It must be pointed out, however, that the instanton trajectory is neither a minimum 

nor a maximum of the action, but an extremum of the action. Consequently, an iterative 

method has the possibility of converging the instanton in real space to the minimum of a 

double-well potential, which is a trivial solution to the stationary condition in Eq. (2.17). 

To prevent this behavior in the iteration method, it is helpful to choose a good initial input 

trajectory to approximate the true instanton solution. An educated guess is the instanton 

solution for the adiabatic surface, which works particularly well in the strong coupling region. 

In the intermediate coupling region, a trajectory solved for a larger coupling constant can 

be employed as an input to the algorithm. In the weak coupling region, the adiabatic 

instanton solution for the cusped barrier is a good initial guess (cf. Appendix B). The rate 

of convergence depends on the discretization number and the initial input. Generally, it has 

been found that around 103 iterations will yield convergence. 

10 



Given a nuclear path q(r), the Bloch equation Eq. (2.9) is solved by numerical integra- 

tion. At each time step e = hß/P, the Hamiltonian Hd at that time is diagonalized and 

propagated for one step. The initial state \/J) and the final state \u) are the right and the left 

diabatic surfaces, respectively. With the electronic wavefunction in hand, one returns to the 

calculation of the instanton trajectory, which in turn leads to a new electronic wavefunction. 

This procedure forms a loop until self-consistency is reached. In the examples studied so far, 

the convergence of the wavefunction and the nonadiabatic instanton trajectory was always 

achieved in less than 100 iterations. 

Once the instanton solution is found, the fluctuation matrix of Eq. (2.18) is computed 

and diagonalized. A vanishingly small eigenvalue will assure a satisfactory stationarity 

condition [Eq. (2.17)] and a negative eigenvalue indicates the metastability of the particular 

solution (i.e., the "barrier" partition function). The prefactor D in Eq. (2.21) can thus 

be calculated, and the action S and work W computed, hence yielding the instanton rate 

constant. In summary, the complete nonadiabatic instanton algorithm consists of following 

steps: 

(1) An approximate instanton trajectory is used as an input. 

(2) The stationary condition in Eq. (2.17) is iterated to a converged trajectory for a given 

electronic wavefunction. 

(3) The Bloch equation in Eq. (2.9) is solved numerically for a given nuclear path. 

(4) Steps (2) and (3) are repeated until convergence is reached. 

(5) The instanton rate constant is computed from Eq. (2.21). 

As stated before, in order to test the method the spin-boson model was studied. In one 

particular form, this model is described by the Hamiltonian 

1 1 N 1 N 

H  =  -mq2 + Aax + -muj2(q-azq0)
2 + J2cj9xi + öl2(±2j+u]xj)     > (3-1) 

^ ^ j=l Aj=l 

where a is the Pauli spin matrix, A is one-half the tunnel splitting, and the modes {x} 

constitute the Gaussian bath. The parameters were chosen in the present case to be U = 1.0, 

u = 1.0, m = 1.0, ß = 5.0, g0 = 5.0. A discretization parameter of P = 200 to P = 400 was 

11 



used in the calculations, depending on the temperature. The parameters of the bath were 

chosen so that its spectral density, given in discrete form by [23] 

A")  =  I E^%-^-)    , (3-2) 

reproduced an appropriate friction kernel in the classical limit. 

As a first calculation, a frictionless spin-boson model was used to verify that the method 

works in well-known limits and to examine the numerical characteristics of the algorithm. 

In Fig. 1, the electron transfer rate constant is plotted as a function of the coupling constant 

A on a logarithmic scale. In the strong coupling region (i.e., large A) the nonadiabatic 

instanton rate approaches the adiabatic rate (dot-dashed line) because the coupling is strong 

enough that the quantum transition takes place on the lower adiabatic surface. In the 

weak coupling region, the nonadiabatic rate obviously becomes proportional to the A2, as 

predicted by the golden rule (dashed line). The golden rule rate in this simple case is given 

analytically by 

' tanh(6/4)~ A2  /7rsinh(6/2) 
iET =  TV    2Eahu    GXP -ßEa- (3.3) 

(6/4) 

where the activation energy is Ea = mw2go/2 and b = Kßu. The adiabatic tunneling rate 

reaches a plateau, which is the instanton rate for a cusped double-well discussed in Appendix 

B. It should be noted that even in this simple limit of the spin-boson model, the method is 

capable of dealing with an arbitrary nonadiabatic coupling strength, bridging the adiabatic 

and nonadiabatic limits of the ET dynamics. It should also be noted that numerically exact 

methods exist for studying the quantum dynamics of spin-boson model for all values of the 

relevant parameters. [4-9] 

In the adiabatic limit, the instanton solution exists only in the quantum tunneling dom- 

inated region, but not in the activated barrier crossing region (for a discussion of these 

limits, see the review in Ref. [40]). The crossover to the instanton rate is given by the well- 

known criterion hßuf, > 2ir, with UJ^ being the adiabatic barrier frequency. A path integral 

quantum transition state theory [10-13] calculation can be performed above the crossover 

12 



region in the adiabatic limit which will bridge with the instanton solution. Furthermore, in 

a complex system all that is required is that a single nuclear mode be tunneling in order 

for the instanton solution to exist. In the nonadiabatic limit, the weak coupling induces 

a nonadiabatic transition in a small region near the crossing of the diabatic surfaces, thus 

leading to a sharp barrier curvature in the adiabatic surface which insures the validity of the 

instanton approach. Therefore, in the golden rule region the steepest descent approximation 

is always valid, even in the classical limit of the nuclear coordinates. 

To further illustrate the characteristics of the nonadiabatic instanton solution, the follow- 

ing results are presented to explore different aspects of the transition from the nonadiabatic 

limit to the adiabatic limit: 

(a) The nonadiabatic instanton trajectories are shown for A = 0.01 and A = 8.0 in Fig. 

2. Obviously, the instanton trajectory shrinks as the coupling constant increases. On the 

other hand, the nonadiabatic trajectory becomes independent of the coupling constant as 

the latter becomes smaller. 

(b) Assuming the electronic wavefunction has been determined, one can define an effective 

potential surface for the instanton trajectory as 

VeffW)]  =  {V[q(r)])d    , (3-4) 

the derivative of which gives the nonadiabatic instanton force. For comparison, one can 

also evaluate the adiabatic potential by diagonalizing the Pauli spin matrix in Eq. (3.1) for 

fixed values of the coordinate q. The effective potential is plotted along with the adiabatic 

potential surface for A = 0.01 in Fig. 3 and for A = 8.0 in Fig. 4. As one can observe from 

Fig. 4, the adiabatic potential surface is a very good approximation to the effective potential 

surface for large coupling constant, whereas the cusped adiabatic potential surface at the 

small coupling constant in Fig. 3 is very different from the rounded effective potential, 

(c) The evolution of spin population is plotted for A = 0.01 in Fig. 5 and for A = 8.0 in 

Fig. 6. As has been stated earlier, in the adiabatic region the relative population on the two 

diabatic surfaces is such that its state vector forms the adiabatic surface. In the golden rule 
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region, the transition is confined in a small region near the crossing point of the diabatic 

surfaces and happens rather dramatically. 

Next, the dissipative quantum tunneling region was investigated by adding a Gaussian 

bath to the spin-boson model [cf. Eq. (3.1)]. The bath spectral density was chosen in the 

Drude approximation, i.e., 

J1 

J(W)  = r,u^f-2    , (3-5) 

where the friction strength rj was 1.0 and the inverse of the memory timescale, uc, was 1.0. 

In Fig. 7, the quantum rate in the dissipative bath is plotted as a function of the coupling 

constant and compared with the non-dissipative rate. As is expected, the tunneling rate is 

reduced by a substantial amount because of the bath dissipation. In addition, the dissipative 

suppression is stronger in the nonadiabatic limit than in the adiabatic limit. 

Finally, the effects of anharmonicity on the quantum rate constant were studied by 

assuming diabatic surfaces defined by 

Va{q)   =   -mu2{q-azq0)
2 + g(q-azq0)

A (3-6) 

where g=0.01 and the other parameters are taken to be the same as in Eq. (3.1). In Fig. 

8, the rate constant for the frictionless system is plotted as a function of the nonadiabatic 

coupling constant A. Clearly, introducing the anharmonicity reduces the tunneling rate and 

the reduction is more drastic in the adiabatic region than in the non-adiabatic region. This 

example illustrates the real strength of the nonadiabatic instanton method, i.e., it is not 

limited to quadratic diabatic surfaces. 

IV. CONCLUSIONS 

In this paper, a computational methodology for determining electron transfer rates has 

been developed. The approach is based on the instanton expression for quantum rate con- 

stants combined with a nonadiabatic dynamics formalism for treating the imaginary time 

14 



instanton dynamics with nonadiabatic transitions. The formulation is completely general 

and thereby capable of treating nonlinear diabatic potential energy surfaces and multiple 

electronic states. It also provides a computational method for bridging the adiabatic and 

nonadiabatic limits of electron transfer processes. The theory was tested for the well-known 

spin-boson model, obtaining excellent agreement with analytical predictions in both the 

adiabatic and nonadiabatic (golden rule) limits. In addition, it was shown that both dissi- 

pation and nonlinearity in the diabatic potentials can readily be included in the calculations 

and may have large effects on the rate constant. In future publications, the nonadiabatic 

instanton method will be further developed and applied to study electron transfer processes 

in realistic systems. 
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APPENDIX A: EVALUATION OF THE INSTANTON PREFACTOR 

In this section, the prefactor D in Eq. (2.21) is explicitly expressed as a normalized 

determinant of the matrix in Eq. (2.18). For a free particle, the matrix describing the 

quantum path fluctuations is given by 

^ = ^(2^-^+1-^-1)    , (Al) 
Sqiöqj      ez 

where e = Tiß/P. A normal-mode transformation immediately leads to the eigensolutions of 

the matrix in Eq. (Al), i.e., 

\t  = 2(1 - COS(2TTZ/P)) (A2) 

where the index I ranges from -(P - l)/2 to (P - l)/2. Obviously, I = 0 gives a zero eigen- 

value which corresponds to the translational invariance of the free particle space. Removal 

of this zero eigenvalue leads to the condition 

n^ = p2 (A3) 

which recovers the correct free particle density. Thereby, the instanton matrix in Eq. (2.18) 

is normalized to the free particle prefactor, giving 

D =   lim^det'(-/^)    , (A4) 
p-oo P2 m oq,öqj 

where "det"' stands for the value of the determinant with the zero eigenvalue removed. The 

above equation defines the prefactor in Eq. (2.21). 
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APPENDIX B: THE INSTANTON SOLUTION FOR THE CUSPED POTENTIAL 

In the weak coupling limit of the spin-boson model for electron transfer, the ground 

state adiabatic potential surface approaches a cusped parabolic double well. For such a 

system, the instanton rate can be exactly calculated. [33] For simplicity, a one-dimensional 

symmetric double well potential is considered here, given by 

V(q) = -mu2(q - sign(g)g0)
2 (B1) 

where the symbol "sign(g)" stands for the sign of q. The action functional for a quantum 

particle embedded in a Gaussian bath then reads 

S[q(r)}  = /^drl^r^ + T/tg^l-i/^/^dr'cGr-r'Dg^gM    ,      (B2) 

where c(|r - r'|) is the correlation function given by Eq. (2.24). 

The quantum rate problem for this potential is most easily solved by properly connecting 

the two analytical solutions of the wells at the cusp. The resulting instanton rate constant 

is given by 

k = 4u2q0.l       .,      . exp   -/?-—        , \p6) 
V 27rn & ^Z(-l)nan V        2 Zeven <W 

where the factor an is denned by 

1 (B4) 
Wn+u2-ßcn/m- 

Here, On = 2-Kn/hß and cn is given by 

1    r*0 
hß 

In the case of a frictionless cusped double-well, the rate constant k can be expressed in a 

closed form as 

on  =  ^l    dTe^c(\r\)    . (B5) 

,mu sinh (6/4) k = 2uq^-n^mmexp -ßEa 

tanh(b/4) 

(&/4) 
(B6) 
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The exponential factor in the above equation is the same as the one in the golden rule 

expression [Eq. (3.3)], whereas the prefactor is by no means the same. Thereby, it is necessary 

to introduce the nonadiabatic coupling mechanism in order to obtain the correct limit for 

the electron transfer dynamics. The above equations, however, can serve as a good initial 

guess for the nonadiabatic instanton algorithm (cf. Sec. 3). 

18 



REFERENCES 

[I] R. A. Marcus and N. Sutin, Biochim. Biophys. Acta. 811, 265 (1985). 

[2] The literature on the subject of electron transfer is vast. Ref. [1] is a representative 

review article. 

[3] J. S. Bader, R. A. Kuharski, and D. Chandler, J. Chem. Phys. 93, 230 (1990). 

[4] C. H. Mak and D. Chandler, Phys. Rev. A 41, 5709 (1990). 

[5] C. H. Mak and D. Chandler, Phys. Rev. A 44, 2352 (1991). 

[6] R. Egger and C. H. Mak, J. Chem. Phys. 99, 2541 (1993). 

[7] R. Egger, C. H. Mak, and U. Weiss, J. Chem. Phys. 100, 2651 (1994). 

[8] D. Makarov and N. Makri, Phys. Rev. A 48, 3626 (1993). 

[9] D. Makarov and N. Makri, Chem. Phys. Lett. 221, 482 (1994). 

[10] G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys. 91, 7749 (1989). 

[II] G. A. Voth, Chem. Phys. Lett. 270, 289 (1990). 

[12] G. A. Voth, J. Phys. Chem. 97, 8365 (1993), for a review of path integral quantum 

transition state theory, see this paper. 

[13] M. J. Gillan, J. Phys. C 20, 3621 (1987). 

[14] J. N. Gehlen, D. Chandler, H. J. Kim, and J. T. Hynes, J. Phys. Chem. 96, 1748 (1992). 

[15] J. N. Gehlen and D. Chandler, J. Chem. Phys. 97, 4958 (1992). 

[16] X. Song and A. A. Stuchebrukhov, J. Chem. Phys. 99, 969 (1993). 

[17] L. S. Schulman, Techniques and Applications of Path Integration (John Wiley and Sons, 

Inc., New York, 1986). 

[18] J. S. Langer, Ann. Phys. 41, 108 (1967). 

19 



[19] W. H. Miller, J. Chem. Phys. 62, 1899 (1975). 

[20] S. Coleman, in The Ways of Subnuclear Physics, edited by A. Zichichi (Plenum, New 

York, 1970), p. 805. 

[21] I. Affleck, Phys. Rev. Lett. 46, 388 (1981). 

[22] R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 10, 4114 (1974). 

[23] A. 0. Caldeira and A. J. Leggett, Ann. Phys. (NY) 149, 374 (1983). 

[24] F. J. Webster, P. J. Rossky, and R. A. Friesner, Comp. Phys. Commun. 63, 494 (1991). 

[25] J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1972). 

[26] J. C. Tully, J. Chem. Phys. 93, 1061 (1990). 

[27] D. F. Coker, in Computer Simulation in Chemical Physics, edited by M. P. Allen and 

D. J. Tildesley (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993). 

[28] P. Pechukas, Phys. Rev. 181, 166 (1969). 

[29] P. Pechukas, Phys. Rev. 181, 174 (1969). 

[30] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill 

Book Company, New York, 1965). 

[31] R. P. Feynman, Statistical Mechanics (Addison-Wesley, MA, 1972), chap. 3. 

[32] L. Chang and S. Chakravarty, Phys. Rev. B 29, 130 (1984). 

[33] Y. I. Dakhnovskii, A. A. Ovchinnikov, and M. B. Semenov, Mol. Phys. 63, 497 (1988). 

[34] H. Grabert, U. Weiss, and P. Hanggi, Phys. Rev. Lett. 52, 2193 (1984). 

[35] V. A. Benderskii, V. I. Goldanskii, and D. E. Makarov, Chem. Phys. Lett. 171, 91 

(1990). 

[36] V. A. Benderskii, V. I. Goldanskii, and D. E. Makarov, Chem. Phys. 154, 407 (1991). 

20 



[37] V. A. Benderskii and et al., Adv. Chem. Phys. 88, xxx (1994), this citation will need 

to be updated in the galley proofs. 

[38] P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987). 

[39] D. Chandler, in Liquides, Cristallisation et Transition Vitreuse Les Houches, Session 

LI, edited by D. Levesque, J. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991). 

[40] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 250 (1990). 

21 



FIGURES 

FIG. 1. A logarithmic plot of the rate constant versus the nonadiabatic coupling constant A 

for the Hamiltonian given in Eq. (3.1). For comparison, the golden rule prediction from Eq. (3.3) 

is plotted as a dashed line, and the adiabatic rate constant is plotted as a dot-dashed line. 

FIG. 2. The nonadiabatic instanton trajectories plotted for A = 0.1 and A = 8.0 as a function 

of the imaginary time. 

FIG. 3. The effective nonadiabatic potential defined in Eq. (3.4) plotted along with the adia- 

batic potential surface for A = 0.01. 

FIG. 4. The effective nonadiabatic potential defined in Eq. (3.4) plotted along with the adia- 

batic potential surface for A = 8.0. 

FIG. 5. The evolution of the population on the two diabatic surfaces plotted for A = 0.01. 

FIG. 6. The evolution of the population on the two diabatic surfaces plotted for A = 8.0. 

FIG. 7. The dissipative rate constant with the bath spectral density given in Eq. (3.5) plotted 

as a function of the nonadiabatic coupling constant. 

FIG. 8. The rate constant in an anharmonic diabatic potential given in Eq. (3.6) plotted as a 

function of the nonadiabatic coupling constant. 
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